The Roots of Atractylodes macrocephala Koidzumi Enhanced Glucose and Lipid Metabolism in C2C12 Myotubes via Mitochondrial Regulation

نویسندگان

  • Mi Young Song
  • Seok Yong Kang
  • Tae Woo Oh
  • Rethineswaran Vinoth Kumar
  • Hyo Won Jung
  • Yong-Ki Park
چکیده

The root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) is a Traditional Korean Medicine and has been commonly used for weight control. Mitochondrial dysfunction appears to be a key contributor to insulin resistance, and therefore mitochondrial targeting drugs represent an important potential strategy for the treatment of insulin resistance and obesity. In this study, the authors investigated the regulatory effects of ARA on mitochondrial function with respect to the stimulation of glucose and lipid metabolism in C2C12 myotubes. After differentiating C2C12 myotubes, cells were treated with or without different concentrations (0.2, 0.5, and 1.0 mg/mL) of ARA extract. ARA extract significantly increased the expression of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC1α) and the downregulations of its targets, nuclear respiratory factor-1 (NRF-1), transcription factor A (TFAM), and total ATP content in C2C12 myotubes. ARA extract also increased the expressions of PGC1α activator and of the metabolic sensors, AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase and sirtuin (SIRT) 1. Furthermore, it significantly increased glucose uptake by enhancing glucose consumption and subsequently decreased FFA contents and increased carnitine palmitoyltransferase (CPT) 1b expression. Our study indicates that ARA has a potential for stimulating mitochondrial function and energy metabolism in muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Root of Atractylodes macrocephala Koidzumi Prevents Obesity and Glucose Intolerance and Increases Energy Metabolism in Mice

Targeting energy expenditure offers a strategy for treating obesity more effectively and safely. In previous studies, we found that the root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) increased energy metabolism in C2C12 cells. Here, we investigated the effects of ARA on obesity and glucose intolerance by examining energy metabolism in skeletal muscle and brown fat i...

متن کامل

The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells

BACKGROUND Type 2 diabetes (T2D) is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiation, glucose metabolism and insulin signal transduction. METHODS In this study, the effects of the...

متن کامل

تأثیر عصاره زردچوبه بر جابجایی ناقل غشایی گلوکز، ایزوتایپ IV (Glut4) در سلول‌های تمایز یافته C2C12

Introduction: Curcumin is a major phenolic compound of Curcuma longa, which has long been used in traditional Indian medicine. Recently, curcumin has been reported to have antihyperglycemic activity in animal models. However, the molecular basis of this action has not been adequatedly described. In the present study the antihyperglycemic effect of curcumin was examined using C2C12 myoblast cell...

متن کامل

The protective effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on the chicken spleen under heat stress via antagonizing apoptosis and restoring the immune function

Heat stress can cause immune organ dysfunction and apoptosis. Polysaccharide of Atractylodes macrocephala Koidz may have protective effects on immune organs. In this study, we established chicken models of Polysaccharide of Atractylodes macrocephala Koidz-heat stress interaction and detected the oxidative index, activities of mitochondrial complexes and ATPases as well as the ultrastructure in ...

متن کامل

Downregulation of lipin-1 induces insulin resistance by increasing intracellular ceramide accumulation in C2C12 myotubes

Dysregulation of lipid metabolism in skeletal muscle is involved in the development of insulin resistance. Mutations in lipin-1, a key lipid metabolism regulator leads to significant systemic insulin resistance in fld mice. However, the function of lipin-1 on lipid metabolism and insulin sensitivity in skeletal muscle is still unclear. Herein we demonstrated that downregulation of lipin-1 in C2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015